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We propose a new method for the calculation of the statistical properties, e.g., 
the entropy, of unknown generators of symbolic sequences. The probability 
distribution p(k) of the elements k of a population can be approximated by the 
frequencies f(k) of a sample provided the sample is long enough so that each 
element k occurs many times. Our method yields an approximation if this 
precondition does not hold. For a given f(k) we recalculate the Zipf-ordered 
probability distribution by optimization of the parameters of a guessed 
distribution. We demonstrate that our method yields reliable results. 
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1. I N T R O D U C T I O N  

Given  a stat is t ical  p o p u l a t i o n  o f  discrete  events  k genera ted  by a s t a t ionary  

d y n a m i c  process ,  one  o f  the m o s t  in teres t ing  s tat is t ical  p roper t i es  o f  the  
p o p u l a t i o n  and  hence  o f  the process  is its en t ropy .  I f  the  sample  space,  i.e., 

the n u m b e r  o f  different e lements  which  are  a l lowed  to occur  in the popu l a -  

t ion,  is small  c o m p a r e d  wi th  the size o f  a d r a w n  sample ,  one  can  

a p p r o x i m a t e  the probabi l i t i es  p(k )  of  the e lements  k by their  re la t ive  

frequencies  f ( k )  and  one  finds for the obse rved  en t ropy  Hob s 

H = - ~ p ( k )  l o g p ( k )  ~ - ~ f ( k )  log f ( k )  = Hob ~ 
k k 

(1) 
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If the number of the allowed different events is not small compared with 
the size of the sample the approximation p ( k ) ~ f ( k )  yields dramatically 
wrong results. In this case the knowledge of the frequencies is not sufficient 
to determine the entropy. The aim of this paper is to provide a method to 
calculate the entropy and other statistical characteristics for the case that 
the approximation (1) does not hold. 

An interesting example of such systems are subsequences (words) of 
length n of symbolic sequences of length L written using an alphabet of 2 
letters. Examples are biosequences like DNA (2 = 4, L < 109), literary texts 
(2 ~ 80 letters and punctuation marks, L < 107), and computer files (2 = 2, 
L arbitrary). For the case of biosequences there is a variety of 
2" = 1,048,576 different words of length n = I0. To measure the probability 
distribution of the words directly by counting their frequencies we need at 
least a sequence of length 108 to have reliable statistics. Therefore the 
ensemble of subsequences of length n is a typical example where the 
precondition does not hold. For the entropy of N words of length n in a 
Bernoulli sequence with ), = 2 where both symbols occur with the same 
probability, one finds the exact result H(")=  n log 2. When calculating the 
observed entropy r4(,,) based on counted relative frequencies, the observed 

** obs 

entropy values are correct for small word length n when we can 
approximatc the probabilities by thc rclativc frcqucncies. From a ccrtain 
word Icngth on (n >n*) the observcd cntropies are significantly bclow thc 
exact values, even for very large samples t4(,,) < H(n). For N= 10 4 we found 

*~ obs 

n* ~ 12, for N= 10 6 we found n* ~, 18. 
Under scveral strong preconditions the probabilities of words in 

sequenccs can be cstimated from the frcquencies using various correction 
methods. ~]-3~ The advanced algorithm proposed in ref. 3 is based on a 
theorem by McMillan and Khinchin ~4~ saying that for word length n---, c~ 
thc frcquencics of the admitted substrings of a sequence are equally dis- 
tributed. If one is interested in the entropies for finite words, however, the 
theoretical basis to apply this theorem is weak and there is no evidence 
about the reliability of the results. Moreover, this theorem is provcn for 
Markov sequences only. In sequenccs gathcred from natural languages, 
biosequences and other natural or artificial sourccs it is very unlikely that 
the probabilities of the words of interesting length, e.g., words or sentcnces 
for languages, amino amids, or elements of the hidden "DNA language" for 
biosequcnccs, are cqually distributed. Otherwise we would have to assume 
that all English five-letter words are equally frequcnt. Certainly this is not 
the case. 
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2. DESCRIPTION OF THE METHOD 

To calculate the entropy of a distribution it is not necessary to deter- 
mine for each event k the probability p(k). It is sufficient to determine the 
values of the probabilities without knowing which probability belongs to 
which event. Generally, if we assume we have K events, there are K! dif- 
ferent relations k ~--~p. We need not determine one particular (the correct) 
relation but only one arbitrary one of them. Hence the calculation of the 
entropy is K! times easier than determining the probability p(k) for each 
event k. We assume a special order where the first element has the largest 
probability, the second one the second largest, etc. We call this distribution 
Zipf-ordered. Zipf ordering means that the probabilities of the elements are 
ordered according to their rank and therefore the distribution p(k) is a 
monotonically decaying function. The following procedure describes how 
to reconstruct the Zipf-ordered probability distribution p(k) from a finite 
sample, provided we have some reason to expect (to guess) the parametric 
form of the probability distribution. As an example we use a simple dis- 
tribution p(k, oL, fl, ~,) with k = I, 2 .... consisting of a linearly decreasing and 
a constant part, 

~(2 - o~fl)/2y + ~(1 - k/fl), 
p(k) = ~(2 - afl)/(2y), 

~0, 

l ~ k < f l  
f l ~ k ~ ?  
k > y  

(2) 

Then the algorithm runs as follows: 

i. Find the frequencies F(k) for the N events k and order them 
according to their value (Zipf order). The index k runs over all different 
events occurring in the sample (k ~ { 1 ..... K MAx} ). Note: there are N events 
but only K Max different ones. Normalize this distribution F~(k)= F(k)/N. 
There are various sophisticated algorithms to find the frequencies of large 
samples and to order them (e.g., ref. 5). As in earlier papers 16~ we applied 
for finding the elements a "hashing" method and for sorting a mixed algo- 
rithm consisting of "Quicksort" for the frequent elements and "Distribution 
Counting" for the long tail of elements with low frequencies. 

ii. Guess initial conditions for the parameters (in our case a, fl, 
and y). 

iii. Generate M samples of N random integers (R/~.', k = 1 ..... N, 
m = 1 ..... M) according to the parametric probability distribution 
p(k, ct, fl, ),). In the following examples we used M--- 20. Order each of the 
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samples according to the ranks fi(k, o~, fl, y) (i = 1 ..... M). Average over the 
M ordered samples 

1 M 
f(k,~x, fl, y ) = ~  ~. f,.(k,~x, fl, y) (3) 

i = l  

with ke{1 ,  k ma~} and km~'=max(k~ ax, ( i=  1 ..... M)). Since we want to 
determine the averaged or typical Zipf-ordered distribution, it is important 
to order the elements first and then to average. Normalize the averaged 
distribution of the frequencies 

/ / d  " ~  \ - I 

f,.(k, o~, fl, ?,) = ( E f (k ,  a, fl, y)) f (k ,  r fl, ?) (4) 
\ k = 0  

iv. Measure the deviation D between the normalized averaged 
simulated frequency distribution fi(k, e, fl, ?,) and the frequency distribution 
Fl(k) of the given sample according to a certain rule, e.g., 

_~( f~ (k ,o~ , f l , ) , )  )2, (5) D - 1 K =  max{k rn~, K MAX } 
k=, \ Fl(k) 

v. Change the parameters of the guessed probability distribution 
p(k) (in our case the parameters 0~, fl, and y) due to an optimization rule 
(e.g., ref. 7) which minimizes D and proceed with the third step until the 
deviation D is sufficiently small. 

vi. Extract the interesting statistical properties out of the probability 
distribution p(k) using the parameters 0r fl*, and y* which have been 
gathered during the optimization process. 

3. EXAMPLES 

3.1. Entropy of Artificial Sequences 

We generated a statistical ensemble N =  10 4 according to the probabil- 
ity distribution (2) with ~ = 9.0 x 10-6, fl = 10,000, and ? = 50,000. Figure 
1 (solid lines) shows the probability distribution p(k) and the Zipf ordered 
frequencies f (  k ). 

Optimizing the parametric guessed probability distribution using the 
proposed method, we find for the optimized parameters ~*=  9.22 • 10 -6 ,  
f l*= 12,900, and ~*= 50,000, i.e., the guessed and the actual distributions 
fall almost together. Since we know the original probability distribution 
[Eq. (2)] we can compare its exact entropy with the entropy of the guessed 
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Fig. 1. The probability distribution p(k) [Eq, (2)] and the Zipf-ordered frequencies f(k) 
corresponding to this distribution. The dashed lines which almost cannot be distinguished 
from the solid lines display the guessed distributions. The initial distributions before optimiza- 
tion are drawn with wide dashes. 

probability distribution Hguess and with the observed entropy H o b  s due to 
Eqs. (6) and (7): 

Hg .... (k ,a*,f l* ,~,*)= -~'p(k,a*,f l*,~*)logp(k,o~*,f l*,?*) (6) 

Hobs(k ) = - ~ F,(k) log F,(k) (7) 

We found H o b  s = 9.0811 and Hg .... = 10.8147; the exact value according to 
p(k, oq fl, ~,) [-Eq. (2)] is H =  10.8188. 

Now we try to guess a probability of a more complicated form: 

(o~(k-e) -1/3, 1 <~k <fl 
p(k) = ~ ~k-~, fl <~ k <<. ~ (8) 

/ 

(0 ,  k > ~  

(As we will show below, this function approximates the probability dis- 
tribution of the words in an English text.) The variables 0t and ~b can be 
eliminated due to the normalization and continuity conditions. The test 
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Fig. 2. The original and guessed probability distributions and the Zipf-ordered frequencies 
for the distribution in Eq. (8) ( N =  104). 

sample of size N =  104 was generated using e =  0.9, f l=  22, ~ = 0.64, and 
),=70,000. After the optimization we guess the parameters e*=0.79,  
f l*=  21.9, ~ *=  0.63 and 7" =65,000. Figure 2 shows the original and the 
guessed probability distributions and the Zipf-ordered frequencies for both 
cases. The guessed entropy Hg .... = 10.5053 approximates the exact value 
H =  10.5397 very well, while the observed entropy Hobs = 8.8554 shows a 
clear deviation from the correct value. 

3.2. Words in an English Text 

With the ansatz (8) we tried to guess the probability distribution of 
the words of different length n in the text Moby Dick by H. MelvilleJ 8~ 
The text was mapped to an alphabet of 2 = 32 letters as described in ref. 9. 
Depending on overlapping or nonoverlapping counting of the words, we 
expect different results. We note that overlapping counting is statistically 
not correct since the elements of the sample are not statistically indepen- 
dent; however, only overlapping counting yields enough words to get 
somehow reasonable results for the observed entropy. We will show 
that our method works in both cases, overlapping and nonoverlapping. 
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F i g .  3. Z i p f - o r d e r e d  f r e q u e n c i e s  o f  w o r d s  o f  l e n g t h  n = 6 i n  M o b y  D i c k .  T h e  c u r v e s  g u e s s e d  

( a )  a n d  ( b )  ( t o p )  d i s p l a y  t h e  f r e q u e n c y  d i s t r i b u t i o n s  w h i c h  h a v e  b e e n  r e p r o d u c e d  u s i n g  t h e  

g u e s s e d  p r o b a b i l i t y  d i s t r i b u t i o n s  i n  t h e  b o t t o m  f i g u r e  a c c o r d i n g  t o  ( a )  E q .  ( 8 )  a n d  ( b )  E q .  ( 9 ) .  

Figure 3 shows the ordered frequencies of N = 5 x 1 0  4 words of the length 
n--6.  The optimized distribution, Eq. (8), reproduces the original fre- 
quency distribution (Moby Dick) with satisfying accuracy. 

Using the ansatz (8), we found e*=0.73,  f l*=31,  ~*=0.70,  and 
7*--129,890. This calculation was carried out for various word lengths n. 
Figure 4 shows the entropies r4~,,) and H (') according to Eqs. (6) and (7) " "  o b s  - - g u e s s  

as a function of n. All results obtained have been derived from a set of 
5 • 10 4 nonoverlapping words taken from the text of length L = l0 6. When 
we count overlapping words, we find surprisingly that the entropy is quite 
insensitive (see,curves using filled and empty diamonds in Fig. 4). The 
rather difficult problem of overlapping or nonoverlapping counting will be 
addressed in detail in ref. 10. Since the exact probability distribution for the 
words in Moby Dick is unknown, we compare the guessed entropy 
(crosses) with the observed entropy (empty diamonds: overlapping count- 
ing; full diamonds: nonoverlapping counting) and an estimation of the 
entropy using an extrapolation method, (6) all based on the same set of data 
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~',) for the text Mob), Dick Fig. 4. Observed entropy H~o'~,l~ and guessed entropy Hg .... 
(N=5x 104) over the word length n. The circles display the results of an extrapolation 
method described in ref. 6 and the squares show the observed entropy of the text using 
N= 106 words. (o) Overlapping, (n) nonoverlapping counting. 

( N =  5 x 104), and with the observed entropy based on a 20 times larger set 
of data (boxes: overlapping counting). As expected, for longer word length 
n the observed values H ~  underestimate the entropy. For small n they are 
reliable due to the reliable statistics. The guessed entropy H~"~s s agrees for 
small n with the observed entropy and for large n with the extrapolated 
values. 

The form of the guessed theoretical distribution p(k,  oc, r,  ~,...) is 
arbitrary as long as it is a normalized monotonically decreasing function 
(Zipf order). Suppose that one has no information about the mechanism 
which generated a given sample. Then one has to find the functional form 
of the guessed distribution which is most appropriate to a given problem, 
i.e., in the ideal case the guessed distribution contains the real probability 
distribution as special case without being too complicated. An ansatz 
p(k,  cx, fl, ~,...) is suited if the optimized guessed probability distribution 
reproduces the frequency distribution of the original sample with satisfac- 
tory accuracy. 

The ansatz (8) looks rather artificial: in fact we tried several forms of 
the guessed probability distribution and the one proposed in Eq. (8) turned 
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out to be the best of them. None of the others reproduces the frequencies 
sufficiently correctly. For demonstration we assume the function 

~a exp( - i lk ) ,  k ~ 
p(k, ct, fl) = (0, k > (9) 

with the normalization ~ = - f l - ~  l o g ( 1 - r / a ) .  The optimized function is 
drawn in Figure 3 [guessed (b)]. We find that the frequency distribution 
reproduced from this function differs much more from the original 
frequency distribution (Moby Dick) than that of the guess according to 
Eq. (8). 

Admittedly, any similar ansatz showing a well-pronounced peak for 
low ranks (frequent words), a long plateau with slow decrease (standard 
words), and a long tail (seldom words) could give reliable results as well. 
Anyhow there is no wide choice for the parametric form of the probability 
distribution. Equation (8) belongs to the class of distributions fulfilling this 
three-region criterion. For a more detailed discussion of the statistics of 
words see, e.g. ref. 11 and many references therein. 

4. D ISCUSSION 

The problem addressed in this paper was to find the rank ordered 
probability distribution from the given frequency distribution of a finite 
sample. For finite samples (Bernoulli sequence and English text) we have 
shown that the calculation of the entropy using the relative frequencies 
instead of the (unknown) probabilities yields wrong results. 

We could show that the proposed algorithm is able to find the correct 
parameters of a guessed probability distribution which reproduces the 
statistical characteristics of a given symbolic sequence. The method has 
been tested for samples generated by well-defined sources, i.e., by known 
probability distributions, and for an unknown source, i.e., the word dis- 
tribution of an English text. For the sample sequences we have evidence 
that the algorithm yields reliable results. The deviations of the entropy 
values from the correct values are rather small and in all cases far better 
than the observed entropies. For the unknown source Moby Dick we have 
no direct possibility to check the quality of the method; however, the 
calculated entropy values agree for small word lengths n with the observed 
entropy and for larger n with the results of an extrapolation method, t6~ In 
this sense both approaches support each other. The proposed algorithm 
can be applied to the trajectories of dynamic systems. Formally the trajec- 
tory of a discrete dynamics is a text written in a certain language using 2 
different letters. The rank ordered distribution of subtrajectories of length 
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n belongs to the most  important  characteristics of  a discrete dynamic 
system. In this way we consider the analysis of  an English text as an 
example for the analysis of  a very complex dynamic system. 

In many cases there is a principal limitation of  the available data, i.e., 
the available samples are small with respect to the needs of a reliable 
statistics, and hence there is a principal limitation for the calculation of  the 
statistical properties using frequencies instead of  probabilities. For  such 
cases, using the proposed method, one can calculate values which could 
not be found otherwise. Given a finite set of  data, the proposed method 
yields the most  reliable values for the Zipf-ordered distributions and the 
entropies which are presently available. The method is not restricted to the 
calculation of the entropy, but all statistical properties which depend on 
the Zipf-ordered probability distribution can be estimated using the 
proposed algorithm. 
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